Can we make the basilic vein larger? maneuvers to facilitate ultrasound guided peripheral intravenous access: a prospective cross-sectional study.

Journal: International Journal Of Emergency Medicine

Background: Studies have shown that vein size is an important predictor of successful ultrasound-guided vascular access. The objective of this study is to evaluate maneuvers designed to increase basilic vein size, which could be used to facilitate ultrasound-guided peripheral intravenous access (USGPIV) in the Emergency Department (ED) setting.

Methods: This was a prospective non-randomized trial. Healthy volunteers aged 18-65 were enrolled. Basilic veins were identified and the cross-sectional area measured sonographically. Following baseline measurement, the following maneuvers were performed: application of a tourniquet, inflation of a blood pressure (BP) cuff, application of a tourniquet with the arm lowered, and BP cuff inflation with the arm lowered. Following each maneuver there was 30 s of recovery time, and a baseline measurement was repeated to ensure that the vein had returned to baseline. Change in basilic vein size was modeled using mixed model analysis with a Tukey correction for multiple comparisons to determine if significant differences existed between different maneuvers.

Results: Over the 5-month study period, 96 basilic veins were assessed from 52 volunteers. All of the maneuvers resulted in a statistically significant increase in basilic vein size from baseline (p < 0.001). BP cuff inflation had the greatest increase in vein size from baseline 17%, 0.87 mm 95% CI (0.70-1.04). BP cuff inflation statistically significantly increased vein size compared to tourniquet placement by 3%, 0.16 mm 95% CI (0.02-0.30).

Conclusions: The largest increase in basilic vein size was due to blood pressure cuff inflation. BP cuff inflation resulted in a statistically significant increase in vein size compared to tourniquet application, but this difference may not be clinically significant.

Simon Mahler, Greta Massey, Liliana Meskill, Hao Wang, Thomas Arnold