The longitudinal spinal cord injury: lessons from intraspinal plexus, cauda equina and medullary conus lesions.

Journal: Handbook Of Clinical Neurology

Spinal nerve root avulsion injury interrupts the transverse segmental spinal cord nerve fibers. There is degeneration of sensory, motor, and autonomic axons, loss of synapses, deterioration of local segmental connections, nerve cell death, and reactions among non neuronal cells with central nerve system (CNS) scar formation, i.e., a cascade of events similar to those known to occur in any injury to the spinal cord. This is the longitudinal spinal cord injury (SCI). For function to be restored, nerve cells must survive and there must be regrowth of new nerve fibers along a trajectory consisting of CNS growth-inhibitory tissue in the spinal cord as well as peripheral nervous system (PNS) growth-promoting tissue in nerves. Basic science results have been translated into a successful surgical strategy to treat root avulsion injuries in man. In humans, this technique is currently the most promising treatment of any spinal cord injury, with return of useful muscle function together with pain alleviation. Experimental studies have also identified potential candidates for adjunctive therapies that, together with surgical replantation of avulsed roots after brachial plexus and cauda equina injuries, can restore not only motor but also autonomic and sensory trajectories to augment the recovery of neurological function. This is the first example of a spinal cord lesion that can be treated surgically, leading to restoration of somatic and autonomic activity and alleviation of pain.

Similar Publications