Home-Based Telemedicine for Automatic Pain Assessment in Cancer Patients: Dataset Creation and Development of Machine Learning Algorithms
In cancer patients, the integration between anticancer therapies and palliative care is of fundamental importance. In this context, telemedicine can improve the quality of life (QoL) of chronic patients through self-management and remote monitoring solutions. This approach can favor the effectiveness of the treatment and therapeutic adherence. Of note, telemedicine can also be applied to the management of cancer pain. In the advanced stages of cancer disease, pain is one of the most obvious and most disabling symptoms. Consequently, proper pain management has a significant impact on the QoL, the ability to withstand treatment, and the recovery of patients. On the other hand, given the complexity of cancer pain, the main obstacle to its proper management is the lack of adequate measurement methods. Although in recent years a great deal of effort has been made in the direction of automatic pain assessment, both concerning the creation of datasets and the development of classification algorithms, the literature is lacking regarding the automatic measurement of pain in the setting of cancer patients. Observation by experienced clinical staff and self-assessment by patients could be useful for obtaining the ground truth and, in turn, for training automatic pain recognition systems.
• Patients aged \> 18 years
• Home care patients diagnosed with advanced cancer disease and life expectancy ≤ 1 year
• Patients receiving treatment for cancer pain
• Patients who have given their consent