Accuracy of an AI Model for Diabetic Retinopathy Screening in Real-life
The increasing prevalence of diabetes mellitus represents a major health problem, especially since around 40% of diabetic patients develop diabetic retinopathy, which severely impairs vision and can lead to blindness. This development could be prevented by annual check-ups and timely referral for treatment. However, there are major differences in the quality of examinations and bottlenecks in examination appointments. A solution to the problem could be the use of artificial intelligence (AI), especially deep learning. Initial studies have shown that deep learning algorithms can be used successfully to detect diabetic retinopathy. However, it remains to be clarified whether the use of AI can achieve a sufficiently high level of accuracy in the detection of retinopathies. Therefore, in the present study, the positive predictive value (PPV), the negative predictive value (NPV), the sensitivity (SEN) and the specificity (SPEZ) of the AI algorithm 'MONA-DR-Model' in the detection of diabetic retinopathy should be measured. In addition, it is to be examined how well the classification into mild and severe retinopathy corresponds and how well this new examination method is accepted by the patients.
• Diagnosis of diabetes mellitus
• Diabetes duration ≥ 5 years
• Age \> 18 years old
• Patient is able to give informed consent
• Fluent in written and spoken German, or interpreter present