Precision Medicine in the Rehabilitation of Locomotor Function: Individual Gait Profiles for Deficit-specific Training Strategies in Spinal Disorders
Impairments of walking function after spinal cord lesion due to, for example, inflammation, ischemia or trauma are exceptionally diverse. Depending on the size, location and completeness of the spinal cord lesion, gait dysfunction is often multifactorial, arising from weakness of leg muscles, sensory impairments or spasticity. Locomotor function in humans with spinal cord damage can be improved through training. However, there are no evidence-based guidelines for the treatment of gait dysfunctions and no excepted standards of gait training in this large and heterogeneous group of patients. A lack of evidence-based guidance and standardisation prevents the development of optimal training programs for patients with spinal cord damage and rather broad and subjective clinical judgement is applied to determine patient care. Objective and quantitative techniques like three-dimensional (3D) full-body movement analysis capable of identifying the most relevant determinants of gait dysfunction at the single-patient-level are not yet implemented as diagnostic tool to guide physical therapy in this heterogeneous group of patients. The objective of this project is to further advance current clinical locomotor training strategies by applying a deficit-oriented gait training approach based on subject-specific, objective gait profiles gleaned from 3D gait analysis in chronic, mildly to moderately gait-impaired individuals with spinal cord damage due to inflammation (in multiple sclerosis, MS) or with traumatic or ischemic spinal cord injury (SCI; motor incomplete). Within a parallel-group clinical trial, gait impaired subjects will be characterized by detailed kinematic 3D gait analysis and either trained according to their individual deficits or treated with non-specific, standard walking therapy for six weeks. It is hypothesized that individually adapted, deficit-oriented training is superior in improving walking function than purely task-related, ambulatory training in patients with spinal cord damage. This project may pave the way to more efficient training approaches in subjects with spinal cord damage by transferring and implementing modern gait assessment techniques into clinical neurorehabilitation and to move towards individual, patient-tailored locomotor training programs.
• Age 18-80 years
• Diagnosis of chronic spinal cord injury (\>6 months cervical or thoracic motor incomplete traumatic or non-traumatic (AIS C, D) above T12 or diagnosis of either primary- progressive, secondary-progressive, or relapsing-remitting multiple sclerosis as defined by the revised McDonald criteria for at least 3 months and with at least one spinal cord lesion as verified in clinical MRI images
• Able to walk without assistance or devices on the treadmill and 10m over ground, but must have impaired walking function as demonstrated by neurological examination.