Therapeutic Strategies for Carbapenem-Resistant Acinetobacter Baumannii Infections: Study Protocol
CRAB infections in ICUs are on the rise, leading to higher morbidity, mortality, and healthcare costs due to resistance to most antibiotics, including carbapenems. The main resistance mechanisms include carbapenemases, efflux pumps, and changes in the bacterial cell wall. Current treatments include polymyxins (Colistin, Polymyxin B), which are effective but can lead to resistance, aminoglycosides (Amikacin, Gentamicin), which are limited by resistance, and tetracyclines (Tigecycline, Eravacycline), which are effective against CRAB. Fosfomycin is effective in combination treatments, and combination therapy (e.g., colistin with sulbactam, fosfomycin, or eravacycline) can enhance outcomes. Previous research shows promise for combination therapies, improving treatment efficacy and reducing mortality. New regimens are being studied to find optimal combinations. Individualized dosing is crucial, considering patient-specific factors like age, weight, and renal function. Adjustments depend on the infection site and comorbidities. Strict infection control and antimicrobial stewardship programs (ASPs) are essential. ASPs focus on optimizing antibiotic use and reducing resistance through education and surveillance. Future directions include continued research for new drugs or combinations and strategies to overcome resistance and improve treatment efficacy. Study goals include achieving negative samples after 10 days of therapy, 30-day survival, discharge rates, reduced SOFA scores, and improved clinical and radiological findings. A randomized study will compare colistin combined with fosfomycin, ampicillin/sulbactam, and eravacycline. In summary, treating CRAB infections is complex, requiring combination therapy, individualized dosing, and strict infection control measures.
• Surgical patients (abdominal, vascular, and polytraumatized patients)
• Older than 18 years
• Require postoperative treatment in the ICU
• A positive sample (surveillance or diagnostic) for A. baumannii with signs of systemic infection
⁃ Infection will be defined as a diagnostic microbiologically positive sample for A. baumannii and a surveillance microbiologically positive sample for A. baumannii with signs of systemic infection (elevated CRP, leukocytes, and body temperature).
⁃ Colonization will be defined as a positive surveillance microbiological sample for A. baumannii in the absence of signs of systemic infection (normal CRP, leukocytes, and body temperature).