Balance, Sensory Modulation, and Autonomic Response to Different Dosages of Non-invasive Mechanical Vagal Stimulation in Healthy Adults
The vagus nerve (VN) plays a crucial role in regulating vital functions (heart rate, blood pressure, digestion, and immune response) and maintaining communication between internal organs and the brain. Recent studies have highlighted the therapeutic potential of VN stimulation (VNS) in treating various conditions such as drug-resistant epilepsy, postural control deficit, COVID-19 infection, chronic pain, and intestinal disorders. In addition, there is growing evidence that the molecules released by the VN neurons affect the function of the gut microbiota and that the molecules released by the bacteria in our gut affect the activity of the VN neurons. In particular, Dr. Giacomo Carta (the leader of this study) has shown how painless neck movements, i.e. mechanical VNS (mVNS), can be applied without adverse effects, representing a potential alternative to invasive methods commonly used today. To further investigate the impact of this novel mVNS, this study aims to evaluate the changes induced by three mVNS protocols on physiological parameters such as resting heart rate, and Heart Rate Variability (HRV) at rest, balance in standing, the perceived intensity of mechanical stimuli using the established clinical method of QST (quantitative sensory testing), fecal transit speed, and the molecular composition of stool (for this, stool samples are analyzed). In particular, stool analysis is very relevant for understanding normal digestion. The present research aims to define the optimal intensity of mVNS and to investigate the therapeutic potential of VNS in the treatment of autonomic dysfunction (such as too low or too high heart rate, too low or too fast digestion, throbbing headaches), as well as falls prevention and pain.
• agreement to participate by signing the informed consent form, being 18-60 years old, and sober