Developing Novel Non-invasive Electrophysiological Biomarkers of Dysfunction in Spinal and Cortical Pathways and Sensorimotor Impairments in Motor Neurone Disease
Substantial variability exists in the onset, and rate of degeneration across individuals with Motor Neurone Disease (MND) or Amyotrophic Lateral Sclerosis (ALS). This variability requires biomarkers that accurately classify and reliably track clinical subtypes as the disease progresses. Degeneration occurs in the brain and spinal cord, however, non-invasive diagnosis of spinal cord function remains highly challenging due to its unique alignment in spine. Disruption of complex spinal and cortical circuits that transmit and process neural signals for position sense and movement has not been adequately captured in the neurophysiological profiling of ALS patients. The overarching aim of this study is to reveal and quantify the extent of change in the sensorimotor integration and its potential contribution to network disruption in ALS.
⁃ \-
⁃ Healthy Volunteers:
• age and gender matched to patient groups
• intact physical ability to take part in the experiment.
⁃ Patients:
• Diagnosis of ALS, PLS, PMA, SMA, Polio or MS
• capable of providing informed consent.